-
ClassyFire Ontology
Click to view/hide 3D structure
Toxicity Summary |
---|
IDENTIFICATION AND USE: Quinine is a bulky, white, amorphous powder or crystalline alkaloid, used as medication: non-narcotic analgesics; antimalarial; central muscle relaxants. It is also used as flavor in carbonated beverages. HUMAN EXPOSURE AND TOXICITY: Serious hypersensitivity reactions, including anaphylactic shock, anaphylactoid reactions, urticaria, serious skin rashes, angioedema, facial edema, bronchospasm, and pruritus, have been reported with quinine. In addition, thrombocytopenia, hemolytic uremic syndrome/thrombotic thrombocytopenic purpura (HUS/TTP), immune thrombocytopenic purpura, blackwater fever, disseminated intravascular coagulation, leukopenia, neutropenia, granulomatous hepatitis, and acute interstitial nephritis have been reported and may also be due to hypersensitivity reactions to the drug. Potentially fatal cardiac arrhythmias, including torsades de pointes and ventricular fibrillation, have been reported rarely during quinine therapy. At least 1 case of fatal ventricular arrhythmia has been reported in a geriatric patient with preexisting prolonged QT interval treated with IV quinine sulfate for Plasmodium falciparum malaria. Visual impairment can range from blurred vision and defective color perception, to visual field constriction and permanent blindness. Cinchonism occurs in virtually all patients with quinine overdose. There have been a large number of case reports of malformations following quinine ingestion in human pregnancy. Many of these pregnancies involved large doses of quinine used as an abortifacient. The most frequently reported abnormality following quinine exposure during early pregnancy is hypoplasia of the auditory nerve with resultant deafness. Other major malformations involving most organ systems have been reported also. However, the Perinatal Collaborative Study reported no association between first trimester exposure to quinine and birth defects. In general, there has been no proven association between quinine at doses used for malarial prophylaxis and an increased risk of malformations. Third trimester exposure to quinine does not appear to adversely affect uterine contractility. However, an increase in insulin secretion associated with hypoglycemia has been reported. Therefore, monitoring of blood or serum glucose levels during quinine therapy is advisable. Although the United States Food and Drug Administration banned its use for nocturnal leg cramps due to lack of safety and efficacy, quinine is widely available in beverages including tonic water and bitter lemon. Numerous anecdotal reports suggest that products containing quinine may produce neurological complications, including confusion, altered mental status, seizures, and coma, particularly in older women. ANIMAL STUDIES: Rabbits given 20 to 100 mg quinine hydrochloride/kg intravenously or intramuscularly 3 times a week for 10 weeks have been reported to show no ophthalmoscopic or histologic abnormalities in the fundus or optic nerve, and /another study/ similarly found no abnormality in most rabbits injected intraperitoneally with 10 mg/kg/day for 21 to 27 days showed degeneration of rods and cones and vacuoles in the retinal ganglion cells. In animal developmental studies conducted in multiple animal species, pregnant animals received quinine by the subcutaneous or intramuscular route at dose levels similar to the maximum recommended human dose based on body surface area (BSA) comparisons. There were increases in fetal death in utero in rabbits at maternal doses = 100 mg/kg/day and in dogs at = 15 mg/kg/day cochlea at maternal doses of 200 mg/kg corresponding to a dose level of approximately 1.4 times the MRHD based on BSA comparison. There were no teratogenic findings in rats at maternal doses up to 300 mg/kg/day and in monkeys at doses up to 200 mg/kg/day corresponding to doses approximately 1 and 2 times the MRHD respectively based on BSA comparisons. Quinine produces testicular toxicity in mice at a single intraperitoneal dose of 300 mg/kg, and in rats at an intramuscular dose of 10 mg/kg/day, 5 days/week, for 8 weeks. The findings include atrophy or degeneration of the seminiferous tubules, decreased sperm count and motility, and decreased testosterone levels in the serum and testes. Genotoxicity studies of quinine were positive in the Ames bacterial mutation assay with metabolic activation and in the sister chromatid exchange assay in mice. The sex-linked recessive lethal test performed in Drosophila, the in vivo mouse micronucleus assay, and the chromosomal aberration assay in mice and Chinese hamsters were negative. |
Source: DrugBank or Hazardous Substances Data Bank (HSDB) |
EFSA's chemical Hazards Database : OpenFoodTox |
---|
This compound is found in OpenFoodTox with the name: Quinine |